
How To Use
WebPageTest and its API
While the richness and interactivity of the average website has

changed dramatically over the last decade, the same can be said

about the expectations of those who consume it. This page has a

list of reports that show how businesses were able to establish a

direct correlation between their website's performance and

conversion/revenue figures.

For example, the engineering team at the Financial Times

conducted a test which showed that an increase of just one second

in load time caused a 4.9% drop in article views.

The underlying cause is pretty simple and it affects projects of all

sizes (yep, including yours): users are becoming more demanding,

less patient and not tolerant towards slow websites or applications.

If your content takes too long to load, people will go somewhere

else. Visiting a site that takes ages to open and navigate is a

terrible user experience, especially on the dominant mobile

environment where immediacy is crucial and battery life is precious.

For that reason, website performance optimization plays an

increasingly important role in the success of any online property. All

major browsers ship with tools that allow developers to keep an eye

on some important performance metrics as the build progresses,

but these are measured from the developer’s own standpoint,

which is not enough to see the full picture.

Factors like geographic location, connection type, device, browser

vendor or operating system can heavily influence perceived load

times, so testing all these variables is the only way to get a (mildly)

accurate representation of how a website is experienced by a

broader audience.

There are various tools and services to approach that problem, but

this article will focus specifically on WebPageTest. We will look at it

from a developer’s perspective, in particular at using its RESTful

API to extract vital information you can use to optimize the

performance of your site.

Table of contents

 About WebPageTest

 Running a test

 Reading the results

 WebPageTest API

 Setting up

 Running a test programmatically

 Custom metrics

 Scripting

 Single point of failure testing

 Wrapping up

#About WebPageTest

WebPageTest is an open source performance testing tool,

maintained primarily by Google. It consists of one or multiple

servers that act as web browsing robots, visiting websites and

automatically collecting data about the experience in the form of a

detailed performance report.

There is a public instance with a large pool of servers that is

available for anyone to use for free, which is what we'll be using in

http://www.webpagetest.org/
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#about-webpagetest
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#running-test
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#reading-results
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#webpagetest-api
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#setting-up
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#running-test-programmatically
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#custom-metrics
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#scripting
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#single-point-of-failure
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#wrapping-up
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#about-webpagetest

the examples throughout the article. Alternatively, the source code

for the platform is available on GitHub, should you want to host it

privately on your own infrastructure.

#Running a test

When you open the WebPageTest website, you'll see the interface

that allows you to run a test straight away. The first thing you need

is the URL of the page to be tested. On top of that, there many

parameters that can be configured, with the main ones being:

 Connection speed

 Test location

 Whether to capture a video of the test

 Number of tests to run (doing a single run means that the test

results are more easily influenced by network or server

anomalies, so WebPageTest consider a best practice to run a

test multiple times and use the average as a most

representative result)

 Single or repeat view (you can choose whether to load a page

once or twice per test; because browser cache is cleared

before each test, this effectively means deciding whether

you’re only interested in the initial, uncached view, or you want

a second time to leverage the browser cache)

Requesting a test on WebPageTest

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#running-test

For this example, we're testing https://css-tricks.com with the

default settings: Chrome on a Cable connection from Dulles, VA,

performing a single run with first and repeat view, with video

capturing enabled.

After requesting the test, you will enter a waiting period, as the pool

of devices is shared by everyone using the public instance of

WebPageTest. For this reason, tests take an unpredictable amount

of time to complete, depending on the number of people using the

devices and the complexity of the test.

This link contains a list of all available resources and their capacity

at any given time.

#Reading the results

The amount of information shown in the test reports can be a bit

overwhelming, so it’s worth having a look at some of the key

metrics returned and what they mean:

 Load Time: The time between the initial request and the

browser load event

 First Byte: The time it takes for the server to respond with the

first byte of the response (in other words, the time it takes for

the back-end to load)

 Start Render: The time until the browser starts painting

content to the screen

 Speed Index: A custom metric introduced by WebPageTest to

rate pages based on how quickly pages are visually populated

(see here for full details on the metric)

 DOM Elements: Number of DOM elements in the page

 Document Complete: Set of metrics relative to the time until

the browser load event, with Time, Requests and Bytes In

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#reading-results
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

representing the load time, number of requests and number of

bytes received, respectively

 Fully Loaded: Similar to Document Complete, but the metrics

are relative to the time at which WebPageTest determines that

the page has fully finished loading content. This is relevant and

different from the above, because pages may decide to load

additional content after the browser load event

Test results page on WebPageTest

The waterfall view is another key piece of the report. It shows a

visualization of the network activity over time, with each horizontal

bar representing an HTTP request. The colors in the bars represent

the five phases of a request: DNS lookup (teal), initial connection

(orange), SSL negotiation (purple), time to first byte (green), and

content download (blue).

It also shows vertical lines to mark key events in the lifecycle of the

page, such as the time it takes for the browser to paint the first pixel

(green), the point at which the DOM tree is ready (pink), or when

the document is loaded (blue). Finally, it shows redirects

(highlighted in yellow) and errors (highlighted in red).

We requested a video recording as part of the rest, so

WebPageTest gives us a set of frames that visually show the page

being drawn on the screen over time. We can use this data to

generate a filmstrip view or an actual video.

Video of CSS-Tricks being loaded on WebPageTest

#WebPageTest API

With the basics of the platform covered, let's dive into how we can

interact with it programatically.

WebPageTest offers a RESTful API for public use. Because it's a

shared instance, usage is limited to 200 page loads per day —

repeat views count as a separate page load, which means that a

test with two runs and a repeat view would count as four page

loads.

It’s also worth mentioning that test results are only kept on the

servers for 30 days, so make sure you save any data you might

need for posterity (including images and videos) to your own

infrastructure.

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#webpagetest-api

Anything you can do on the WebPageTest UI can also be done

programmatically, as the site itself makes use of the RESTful API.

You can request tests and obtain the results, which you can then

feed into a variety of outlets, like a data visualization tool,

continuous integration process, trigger Slack or email alerts, or

pretty much anything.

The code examples shown throughout the article are written in ES5

JavaScript for a Node.js environment, making use of

the WebPageTest API wrapper. But because the API is RESTful, it

can be accessed using any language or environment capable of

sending an HTTP request, so everything you'll see here can be

ported to your language of choice.

#Setting up

The first step is to request an API key. After filling in your details,

you should get a key straight away.

With that done, we can set up a new Node.js project and install the

WebPageTest API wrapper.

npm install webpagetest --save

var WebPageTest = require('WebPageTest')

var wpt = new WebPageTest('https://www.webpagetest.org/', 'your-api-key')

The WebPageTest constructor takes two parameters:

 The URL of the WebPageTest instance (unless you're using a

private instance, this will be https://www.webpagetest.org/)

 The API key

#Running a test programmatically

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#setting-up
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#running-test-programmatically

We're going to repeat the test we did before, but this time

programmatically using the API. We need the runTest function,

which takes two parameters:

 The URL of the site being tested

 An object containing a list of options to configure the test

(see here for a list of all available options)

wpt.runTest('https://css-tricks.com', {

 connectivity: 'Cable',

 location: 'Dulles:Chrome',

 firstViewOnly: false,

 runs: 1,

 video: true

}, function processTestRequest(err, result) {

 console.log(err || result)

})

Remember that requesting a test puts you in a waiting list, so the

response you'll get from running the code above is not the actual

test result, but more of a receipt that you can use to check on the

progress of the test and obtain the results when they're ready.

{

 "statusCode": 200,

 "statusText": "Ok",

 "data": {

 "testId": "160814_W7_960",

 "ownerKey": "ad50468e0d69d1e6d0cda22f38d7511cc4284e40",

 "jsonUrl": "https://www.webpagetest.org/jsonResult.php?test=160814_W7_960",

 "xmlUrl": "https://www.webpagetest.org/xmlResult/160814_W7_960/",

 "userUrl": "https://www.webpagetest.org/result/160814_W7_960/",

 "summaryCSV": "https://www.webpagetest.org/result/160814_W7_960/page_data.csv",

 "detailCSV": "https://www.webpagetest.org/result/160814_W7_960/requests.csv"

 }

https://github.com/marcelduran/webpagetest-api#options-1

}

We're particularly interested in data.testId, as it contains a string that

uniquely identifies our test. We can pass it to

the getTestStatus method to check if the test is ready.

wpt.getTestStatus('160814_W7_960', function processTestStatus(err, result) {

 console.log(err || result)

})

Eventually (depending on how busy the platform is) you'll get a

response containing:

{

 "statusCode": 200,

 "statusText": "Test Complete"

}

At this point, we know that the test results are ready and we can

fetch them usinggetTestResults.

wpt.getTestResults('160814_W7_960', function processTestResult(err, result) {

 console.log(err || result)

})

This method of getting results involves some manual work on our

end, as we need to keep calling get TestStatus until we gt

a 200 response, and only then callgetTestResults. There are two

alternative (and more convenient) ways of doing this:

1. You can pass a pingback option to runTest, containing a URL to

be called by WebPageTest once the test is complete. This

could be a route in your web server built specifically to handle

test results. The test ID will be passed as an id query

parameter, which you could use to call getTestResults.

2. You could incorporate all three steps (requesting, polling and

retrieving) in the call to runTest by providing a pollResults option.

Its value, in seconds, represents an interval used to poll the

API for the status of the test. The execution will only finish

once the test results are returned.The following example (using

option 2) is a combination of all the steps we've seen, and uses

one single call to runTest to request a test, poll the API every 5

seconds until the result is ready, and finally output the results.

I'm not going to include the full response here because it's massive

(375KB of data!), but you can see it in its entirety here. Instead,

we'll see how we can drill down into it to find some of the metrics

we described earlier.

wpt.runTest('https://css-tricks.com', {

 connectivity: 'Cable',

 location: 'Dulles:Chrome',

 firstViewOnly: false,

 runs: 1,

 pollResults: 5,

 video: true

}, function processTestResult(err, result) {

 // First view — use `repeatView` for repeat view

 console.log('Load time:', result.data.average.firstView.loadTime)

 console.log('First byte:', result.data.average.firstView.TTFB)

 console.log('Start render:', result.data.average.firstView.render)

 console.log('Speed Index:', result.data.average.firstView.SpeedIndex)

 console.log('DOM elements:', result.data.average.firstView.domElements)

https://gist.github.com/eduardoboucas/f30ad56f2b7a8bae07f55e49a987dd5b

 console.log('(Doc complete) Requests:', result.data.average.firstView.requestsDoc)

 console.log('(Doc complete) Bytes in:', result.data.average.firstView.bytesInDoc)

 console.log('(Fully loaded) Time:', result.data.average.firstView.fullyLoaded)

 console.log('(Fully loaded) Requests:', result.data.average.firstView.requestsFull)

 console.log('(Fully loaded) Bytes in:', result.data.average.firstView.bytesIn)

 console.log('Waterfall view:', result.data.runs[1].firstView.images.waterfall)

})

#Custom metrics

The metrics shown above are just a small subset of everything

WebPageTest captures, as you can see by dissecting the full result

payload. But sometimes it's important to measure other things, like

metrics that are only relevant to the specific website being tested.

With WebPageTest, we can do this with custom metrics, a feature

that allows us to execute arbitrary JavaScript code at the end of a

test.

For example, we could be interested in tracking the performance

impact caused by the number of iframes that are being loaded, or

by any ads being served from a specific provider. Let's see how we

can measure that.

var customMetrics = [

 '[iframes]',

 'return document.getElementsByTagName("iframe").length',

 '[ads]',

 'return Array.prototype.slice.call(document.getElementsByTagName("a")).filter(function (node) {

return node.getAttribute("href").indexOf("ad.doubleclick.net") !== -1 }).length'

]

wpt.runTest('https://css-tricks.com', {

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#custom-metrics

 custom: customMetrics.join('\n'),

 connectivity: 'Cable',

 location: 'Dulles:Chrome',

 firstViewOnly: false,

 runs: 1,

 pollResults: 5

}, function processTestResult(err, result) {

 console.log('Iframes:', result.data.average.firstView.iframes)

 console.log('Ads:', result.data.average.firstView.ads)

})

Each metric is defined as a block of JavaScript preceded by an

identifier in square brackets, separated by a line break.

To get the number of iframes, we're simply finding and counting

all <iframe> elements in the DOM. As for the ads, we're looking at

all <a> nodes that contain ads.doubleclick.net in the href attribute.

These are simplified examples for the sake of conciseness, but you

can define metrics with routines as long and complex as you want.

This article describes custom metrics in depth, offering some really

interesting insight on what is worth measuring.

#Scripting

By default, a test consists of WebPageTest visiting a site and

capturing data until the point it's fully loaded. It then extracts any

custom metrics, if defined, and the test if finished. While this works

for most cases, WebPageTest offers a scripting functionality that

allows you to create more complex, multi-step test routines.

For example, you can create a test that emulates a user clicking on

a button, filling details in a login form or pretty much any physical

interaction you could normally have with the page.

https://speedcurve.com/blog/user-timing-and-custom-metrics/
https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#article-header-id-7

Scripts consist of a list of instructions containing custom commands

(see this link for a list of available commands), encoded in an array

of objects that is then converted to a string using

a scriptToString method.

When running a scripted test, the normal way of passing the target

URL to runTest isn't valid. Instead, the script itself will indicate the

link(s) that WebPageTest should follow, so you must include at

least one navigate command followed by a URL (values are tab-

separated).

By design, there can be only one command outputting test results,

so multi-step tests should make use of the log Data to toggle the

production of results on and off based on the commands you wish

to capture.

In the example below, we'll create a test that navigates

to https://css-tricks.com and fills in the search box with the

term flexbox. At this point, we turn on the output, submit the form

and wait for it to complete. This multi-step test will capture the

experience of using the search functionality on the site.

var script = wpt.scriptToString([

 {logData: 0},

 {navigate: 'https://css-tricks.com'},

 {setValue: ['id=q', 'flexbox']},

 {logData: 1},

 {submitForm: 'id=search-form'},

 'waitForComplete'

])

wpt.runTest(script, {

 location: 'Dulles:Chrome.Cable',

 firstViewOnly: false,

 runs: 1,

 video: true

}, function (err, result) {

 console.log('Video frames:', result.data.runs[1].firstView.steps[0].videoFrames)

})

#Single point of failure testing

It's pretty common for websites to rely on third-party sources to

deliver key parts of its data, such as fonts or scripts, so it's

important to account for the possibility that those services might fail

at some point.

This is particularly important when the assets being loaded are

render-blocking (i.e. not loaded asynchronously), as trying to load a

file from an unavailable source could leave the site hanging for a

while until the request times out. The video below shows the effect

caused by an outage of the Twitter API on the load times of the

Business Insider website.

To make our tests account for this, it's important to get the failing

mode right, as described by Patrick Meenan in this article.

Because unavailable services won't typically fail instantly with an

error message, setting up a test that tries to load something from a-

host-that-doesnt-exist.com isn't good enough, because it doesn't

accurately reflect what happens in a real scenario.

Instead, Patrick set up a special server

on blackhole.webpagetest.org: as the name suggests, it routes

any request made to it to absolutely nowhere. If we intercept all the

requests made to the host we're trying to test and redirect them to

this black hole server, we have a very good simulation of a real

failure scenario.

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#single-point-of-failure

The example below shows how we could run a test that simulates a

failure incode.jquery.com, which many sites use to load jQuery

from. We could compare the results obtained with the ones from

the normal test to have an idea of the impact this single point of

failure would have on the various performance metrics.

var script = wpt.scriptToString([

 // Redirecting 'jquery.com' to the black hole server

 {setDnsName: ['jquery.com', 'blackhole.webpagetest.org']},

 {navigate: 'https://css-tricks.com'}

])

wpt.runTest(script, {

 location: 'Dulles:Chrome.Cable',

 firstViewOnly: false,

 runs: 1,

 video: true

}, function (err, result) {

 // Extract your metrics here

})

#Wrapping up

This article isn't an attempt of a comprehensive guide on

WebPageTest, since that's material for an entire book! Instead, we

focused on what the platform is, the information it provides and,

more specifically, how to interact with it programmatically.

But extracting the data is just the start — it's what we do with it that

can impact how our websites perform. I'll follow up soon with my

take on using what I've shown here to build a bespoke performance

monitoring tool, with the ability to visualize performance metrics

over time, establish performance budgets and receive alerts when

they're not met.

https://css-tricks.com/use-webpagetest-api/?ref=webdesignernews.com#wrapping-up

